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* Cooling temp: 

2 60 - 0, = - I.0 exp. (-1.39 tiS*) 

o 8, = -055 (Const. along inner bound) 
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FIG. 4. Heat transfer through inner boundary surface of the 
cylinder calculated for axially varying temperature distribu- 
tion (solid lines) and for constant “equivalent” ambient 

temperatures (circles). (5* = lO:l, rt = 2: 1, 8, = 0). 

axial heat-transfer effects for various initial and boundary 
conditions are given in [l-3] and [&lo]. 
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NOMENCLATURE A constriction alleviation factor, defined as the ratio 
of the actual resistance to that of the disc con- 

temperature ; 
total heat flow; 

striction resistance when bounded by a semi 

temperature drop due to one side of constriction 
infinite conductor; 

(see Fig. l(a)) ; 
u, t, dummy variables of integration. 

thermal resistance of one side of constriction AT/Q ; 
thermal conductivity; 

INTRODUCTION 

radius of metallic contact spot (see Fig l(b)); IN THE study of the thermal resistance of metallic contacts it 
radius of cylindrical region feeding the contact ; is usual to model the conductors as a series of cylindrical 
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elements concentric with the actual metal to metal contact 
spots, which are assumed to be uniformly distributed over 
the apparent zone of contact The resistance to potential 
flow within each cylindrical element (“unit cell”) consists of 
a bulk longitudinal resistance of the conductor and a 
constriction resistance caused by a pinching-in of the heat 
flow lines as they pass through the relatively small area of 
the actual contact spot. For most joints, these actual contacts 
are very widely spaced relative to their mean diameter, and in 
the absence of heat flow through a conducting fluid at the 
interface, the constriction resistance of each unit cell may 
be taken as that of a flat circular disc bounded on each side 
by a semi infinite conductor, viz the classical “disc con- 
striction resistance” to potential flow [l, 21. However, when 
the flow fields ofneighbouring spots interfere, this resistance 
must be modified by a “constriction alleviation factor” to 
account for the finite size of the unit cell. There have been 
several published forms of this factor based on simplifying 
assumptions [3,4] or on empirical data [S]. It is the purpose 
of this brief note to present an analytical solution for the 
accurate evaluation of this factor and to compare this with 
published data. 

It should be noted that the presence of a conducting fluid 
at the metallic interface can modify greatly the potential 
flow fields of the unit cells, and the reader is referred to more 
comprehensive treatments [3, 9) to deal with such cases. In 
general the contact resistance is lowered by the inclusion of 
a conducting fluid and also by increasing the number (or 
density) of actual contact spots within the joint. 

ANALYSIS 

The parameters of the mixed boundary value problem arc 
summarised in Fig. 1. Sneddon [6] considers a similar 
situation and, using cylindrical coordinates, chooses a 
solution for the potential field in the form 

T(r, z) = co2 + f a; ‘C.J,(raJ exp (- zn,) (1) 
“=l 

where 1, are the roots of J,(r) = 0. 
This satisfies conditions (i), (ii) and (iii) of Fig l(b). 

Conditions (iv) and (v) lead to the dual series equations, 

T(r, 0) = la = f I;‘C,J,(r&) for 0 C r < a (2) 
n=1 

and 

a T(r, z) 
8Z 

= 0 = Co - f C,J,(rd,,) for a < r < b. 
r=l) n=* 

Representing 

(3) 

0 

t W, 4 by?!. ~ J th(t) dt 

r dr J(t’ - r’) (4) r=0 
, 

I 

I 

I 

la 1 (b) 

FIG. 1 Conditions satisfied by “T”. 

(i) V2 T = 0, 
(ii) aT/az + a constant as z + co, 

(iii) aT/& = 0 at r = b, 
(iv) aT/az = 0 at z = 0, a < r c b, 
(v) T = 1 at z = 0,O < r < a. 

where h(t) is an unknown function, and combining this with 
the formula for the coefficients of a Dini series [7], we 
obtain for 

Co = 2 jh(t)dt 
0 

and 
2 a J c, =- 

J&) 
h(t) cos (tA,) dt. 

(5) 
Substitution of these into the dual series equations gives 

h(t) - ; h(u) E,(t, u) du = x(t) (6) 
0 

where 

t 
+) = 15 uT(u, 0) du 

ndt J ,/(t’ - u2) 0 
and where 

co 

4 El@, u) = $ + L2 

s 
E) [21,(y) - y cosh(uy) cash (ty)] dy. 

0 

(8) 
Now C, is the terminal axial temperature gradient and the 
total heat flow Q is given by Fourier’s Law as x .b2 Co. k. 
The classical disc constriction resistance is 
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hence 

R, = -!- 
4ak' 

4aA.T f=-_ 
zC,,b2. 

(9) 

If AT and b are each chosen as unit values, 

f+f---. (10) 

The factorfwas evaluated, in digital form on the Monash 
University CDC 3200 computer, using steps of 0.02 for 
values of a/b < 0.20, and in steps of 0.10 for a/b > 0.20. 
The resulting values are shown as curve A in Fig. 2. 
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FIG. 2 
Key to curves: 
A-Authors, 
B-Roess (Ap~nd~ to [S]. first 4 terms and com~nsating 

term), 
C-Holm ([l] modified), 
DCetinkale ([3] uncorrected), 
E-Kouwenhoven-Sackett ([5] approx.), 
F-Laming ([4] linear approx.). 

DISCUSSION 

In almost all practical situations involving heat flow 
across joints, the contact radius ratio a/b is low, probably 
less than 0.2 In this region of Fig 2, the approximated values 
of the constriction alleviation factor as given by Hohn [l], 
Laming [4], Roess [S], a11 match closely the values derived 
herein. The closest match is with the expression attributed 
to Roess referred to by Weills md Ryder [8], but the 
derivation of this cannot be traced. At very low values of 
the radius ratio, the poorest match is with that of Kouwen- 
hoven and Sackett [5], believed to be derived from test 
results. At values of the radius ratio above about 0.08 the 
poorest match is with that of Cetinkale [3]. 

It is suggested that any of the previously published four 
analytical expressions for constriction alleviation factor 
may be acceptably accurate when used for predicting the 
resistance of solid contacts commontv encountered in 
engineering. The agreement amongst these expressions is 
much closer than the accuracy normally obtained from 
tests. 
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